1.学大教育专注高考辅导机构的老师会根据孩子的学习情况,帮助孩子解决基础知识薄弱、零散、缺乏知识脉络、不能交叉运用等问题,帮助学生夯实基础。
2.学大教育高中个性化全科辅导补课机构注重孩子稳步学习、锻炼思辨力、意志力和解决困难及问题的能力,帮助孩子查漏补缺。帮助孩子分析今年高考失分点,以及孩子学习的薄弱点,找到解决和学习的方法。
3.学大教育高考辅导机构不仅注重高考复读生的学习,还注重学生的心理。先让学生缓解一下高考失利的心情和下一年高考的恐惧心理。调整好心态后,老师对知识进行延伸和拓展,在知识点的深度和宽度上进行辅导。
4.学大教育高考辅导机构有专业强大的师资团队,尤其是高考复读辅导补习班的老师不仅有多年的高考辅导补习经验,还对每年高考真题了解分析,以及对高考生心理把握的经验。
3.业务范围
授课年级:小学、初中、高中以及艺考生、体育生文化课、单招考生
授课班型:个性化一对一、精品班课、全日制托管班、艺考文化课集训班
授课科目:数学、物理、化学、英语、语文、生物、政治、历史、地理以及单招文化课辅导
1、金博教育
2、精勤教育
3、龙文教育
4、锐思教育
5、博众未来教育
6、戴氏教育
7、秦学教育
8、京誉教育
9、新东方教育
10、学大教育
以上内容来源于网络,仅供大家参考
初中语文阅读理解解题技巧与方法,语文阅读理解题是一种综合性的题型,它能有效地检测学生的阅读理解能力和语文素质,平心静气审题,切忌粗心,按照由易到难,由浅入深的思维方式,逐渐的打开思路,认真看清每一个字、词、句、甚至每一个标点,要看清题目的要求,分析问题的提问要点,例如要求在正确的句子后面打“√”,有的同学在正确的句子后面打“√”后,又多此一举地在错误的句子后打上了“×。
1;基础不扎实,初三跟不上学习节奏、听不懂课程;
2;孩子因某些原因落下课程,回学校也跟不上,想全面系统重新备考中考;
3:孩子进步缓慢甚至没有进步,焦虑状态不好;
4:孩子想在初三冲刺取得较大提升;
5:孩子不适应学校大班教学,想换个地方学习;
教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答(也可点击下方预约试听)
信息已加密,请放心提交,提交后会有专业老师给您回电,请保持电话畅通。