TOP1、学大教育(小学、初中、高中课外文化课补习)
TOP2、金博教育(小初高一对一)
TOP3、新东方(小初高辅导,中考冲刺,高三集训,艺考生文化课冲刺)
TOP4、锐思教育(小初高一对一辅导,中考高考一对一全日制)
TOP5、捷登教育(高中辅导,高三冲刺,一对一,小班课)
TOP6、星火教育(小初高中辅导,高三全日制)
TOP7、博思教育(中小学全科辅导、上门家教)
TOP8、龙文教育(高中辅导 高三全日制)
TOP9、戴氏教育(初高中辅导,小班课)
TOP10、博众未来教育(初中高中一对一辅导)
以上内容来源于网络,仅供大家参考
优良、专业的课外辅导机构在师资上绝对是配备精良的,在信息上能与各大学校和社会信息同步,而且它们等同于一个学校,各方面的设施平配备方面都很齐全。这种机构不但能让孩子找到学习上的问题所在, 还能对症下药,效果比较明显。希望各位家长可以找到适合自己孩子的优质辅导补课机构(仅供大家参考)
教学模式
1.一对一教学
一对一教学,根据每一个孩子不同的个性特征、学习因素等,为孩子量身定制出一套有针对性的一对一指导方案。
在教学上,老师十分注重硬技能和软技能之间的结合。
硬技能:学生学习必须了解的知识点、必须达到的基础要求。
软技能:学习心态、学习习惯、学习方法等多维度辅导,从而达到综合提升,全面发展的目的。
2.小组课教学
小组课是一对一服务的延伸,实施4-8人的小班课教学的授课模式。
小组课的每一个学员享有专属的教学团队、教学方案和服务团队。学生之间也能相互学习并形成良性竞争,最终达到尊重每个学生个性化学习的教学目的。
互动频次高,孩子吸收有保障
4-8人的小班课教学,老师关注度高,针对性强
课上增设问答环节,激发孩子主动学习
1、语文:涵盖文言文实词虚词释义、诗词鉴赏技巧、现代文阅读分析方法、作文写作指导(包括立意、选材、结构、文采提升)等;同时注重语文基础知识积累,如字词读音、书写、病句修改。
2、数学:从初一有理数、代数式开始,系统讲解初中数学知识点,包括函数(一次函数、二次函数等)、几何图形(三角形、四边形、圆)性质与证明、统计与概率等;配合经典例题、模拟考题强化训练解题技巧。
3、英语:包括初中英语单词、短语、句型背诵记忆,语法知识精细讲解(时态、语态、从句等),听力、口语、阅读、写作专项训练;借助英语原声材料提升听力水平,通过话题写作锻炼写作能力。
4、物理:讲解力学(重力、摩擦力、浮力等)、电学(电路、电流、电压等)、热学(物态变化、比热容等)等基础概念与原理;结合实验演示与实验题练习,培养学生实验探究与分析能力。
5、化学:初三化学重点学习元素符号、化学式、化学方程式书写,酸碱盐性质与反应,化学实验基本操作与实验探究;以生活中的化学现象为切入点,激发学生学习兴趣。
6、政治:依据教材梳理道德、法治、国情等知识点,培养学生运用所学知识分析社会热点问题的能力,如结合时事新闻分析*政策的意义。
7、历史:按时间线讲述中国古代史、近代史、现代史以及世界历史重大事件、人物、影响;通过史料分析训练学生历史思维与解读能力。
8、地理:学习地球与地图、世界地理(各大洲、*地理特征)、中国地理(地形、气候、河流等)知识;借助地图、地理模型等教具,帮助学生建立空间地理概念。
9、生物:涵盖细胞结构与功能、生物多样性、生物体结构层次、生物圈等知识讲解,佐以显微镜操作、解剖实验等实践活动。
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用走一走、瞧一瞧的策略;
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答(也可点击下方预约试听)