华新文登·专注考研培训15年

东营高性价比考研寄宿集训营培训机构十大排名汇总

时间:2025-10-04 09:01:01 点击:14

东营高性价比考研寄宿集训营培训机构十大排名汇总

东营高性价比考研寄宿集训营培训机构十大排名汇总

一、新东方考研

二、高途考研

三、研途考研

四、中公考研

五、海文考研

六、启航考研

七、文都考研

八、新文道考研

九、学信考研

十、金程考研

以上排名仅供参考,考生在选择考研机构时,应根据自身需求(如基础水平、目标院校、自律性等)综合考量,建议实地考察、试听课程,并参考往届学员评价,选择最适合自己的考研机构。

考研辅导班

考研指南

考研数学必备知识点归纳

学习要想有所成效主要还是看方法。聪明的人有自成一派的学习方法,因此学习对他而言并不难,经常还能达到事半功倍的效果。广州小编整理考研数学必备知识点归纳,一起来看吧。

考研数学必备知识点归纳(1)

一、一元函数积分学

1、理解原函数和不定积分和定积分的概念。

2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。

3、会求有理函数、三角函数和简单无理函数的积分。

4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式。

5、了解广义积分的概念并会计算广义积分。

6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等)。

重点是原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用。难点是第二类换元积分法,分部积分法。积分上限的函数及其导数,定积分元素法及定积分的应用。

二、向量代数与空间解析几何

1、理解向量的概念及其表示。

2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。

3、掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题。

4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

5、了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程。

考研数学必备知识点归纳(2)

在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。

矩阵的加法和数乘,与向量的运算类同。

矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。即可以把一个矩阵看作是一种线性变换在数学上的表述。

矩阵的乘法,反映的是线性变换的叠加。如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。

矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足交换律,满足结合律。

利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。

对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。

关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。

一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。

每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。

若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。

第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。

矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。

单位阵和初等矩阵都是可逆的。

若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。

可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。

由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。

矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种最常见的对矩阵进行分块的方式。

新东方考研

新东方考研是新东方教育科技集团有限公司旗下的考研培训品牌,致力于为广大考研学子提供全面、专业、高效的考研辅导服务。以下是对新东方考研的详细介绍:

一、品牌背景

‌成立时间‌:新东方考研成立于2001年8月,是新东方教育科技集团有限公司的重要组成部分。

‌公司规模‌:新东方教育科技集团有限公司发展迅速,截至2024年5月31日,下属学校和学习中心的总数已达到1025所,其中学校总数为81所。

二、教学特色

‌优秀师资‌:新东方考研拥有一支由资深教师组成的师资团队,他们具有丰富的教学经验和专业知识,能够为学员提供高质量的教学服务。

‌小班教学‌:新东方考研采用小班教学模式,确保每位学员都能得到充分的关注和指导。

‌全程督学‌:部分课程提供全程督学服务,帮助学员保持良好的学习状态,提高学习效率。

‌丰富资料‌:新东方考研为学员提供全套的学习资料,包括教材、讲义、真题等,方便学员进行自主学习和复习。

三、学员评价

新东方考研凭借其优秀的教学质量、专业的师资团队和贴心的服务赢得了广大学员的好评。许多学员表示,在新东方考研的帮助下,他们成功提高了自己的考研成绩,实现了自己的考研梦想。

综上所述,新东方考研是一个值得信赖的考研培训品牌。如果你正在准备考研,不妨考虑选择新东方考研作为你的辅导机构。

温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答

华新文登·专注考研培训15年咨询热线:15538707698

以上图文信息由机构提供豫ICP备2022021264号
咨询热线 在线客服 预约课程 网站首页